# The Evolution of the IGS Flow of Data (and Products and Information) and Steps Ahead

C. Noll, NASA GSFC M. Schmidt, NRCan H. Habrich, BKG B. Garayt, IGN

Ressources naturelles











# Evolution of the IGS Flow of Data and Steps Ahead

- Background
  - Past DC-Related Recommendations
  - Statistics on Data Availability
  - Statistics on Data Latency
- Issues
- Way forward
  - Data flow
  - RINEX construction
  - Compression



#### Past DC-Related Recommendations

#### For DCs:

- Provide statistics covering data availability, data latency, completeness of data files and the consistency of the records in the RINEX header and the site logs
- Determine need for better harmonization of the IGS data center structure and contents
- Investigate accumulation of data streams as a possible replacement for ftp file transfer of selected IGS data sets (i.e., high-rate 15-minute 1Hz files) with the provision that IGS data centers archive files of identical content

#### For ACs:

- Define requirements for data latency
- Define requirements for data QC and validation at IGS data centers

#### For others:

Update TEQC to accommodate new RINEX formats and future satellite systems



## Statistics on Data Availability

- Daily status files available at CDDIS recently enhanced per IC request
- ftp://cddis.gsfc.nasa.gov/pub/gps/data/daily/YYYY/ddd/ YYddd.status
- Software available to other DCs

| IGS T | Frac | king N | etwork | Status | fo | r 10- | May-1 | 0 100 | 510 101 | 30 GPS Week 1583 D | ay 2 As        | of d | ate: May  | 17 2010 10:2 | 7:21   |           |       |         |      |
|-------|------|--------|--------|--------|----|-------|-------|-------|---------|--------------------|----------------|------|-----------|--------------|--------|-----------|-------|---------|------|
|       | Dly  | No.    | No.    | Pts.   |    | Avg.  | Avg.  | Pos.  | No.     |                    |                | Ant. |           |              | Marker |           | RINEX | Dly     |      |
| Site  | (H)  | Exp.   | Obs.   | Del.   | 8  | MP1   | MP2   |       | -       | Receiver Type      |                |      | Height    |              |        |           |       | Version | (M)  |
| abmf  | 10   | 25780  | 25640  | 136    | 99 | 0.41  | 0.51  |       |         | TRIMBLE NETR5      | TRM55971.00    |      | 0.0000 AE |              |        | 97103M001 |       | 2.11    | 630  |
| abpo  | 1    | 26268  | 25800  | 0      | 98 | 0.35  | 0.37  | 0.09  | 23 1    | ASHTECH UZ-12      | ASH701945G_M   | SCIT | 0.0083 AE | BPO          |        | 33302M001 | G     | 2.11    | 14   |
| ade1  | 20   | 25447  | 25133  | 0      | 98 | 0.43  | 0.41  | 0.04  | 4 1     | ASHTECH Z-XII3     | ASH700936B_M   | SNOW | 0.0000 ad | le1          |        | 501098001 | G     | 2.11    | 1253 |
| ade2  | 20   | 25447  | 25071  | 1      | 98 | 0.42  | 0.41  | 0.04  | 5 1     | ASHTECH Z-XII3     | ASH700936B_M   | SNOW | 0.0000 ad | le2          |        | 501098001 | G     | 2.11    | 1253 |
| adis  | 24   | 28500  | 22796  | 672    | 79 | 0.53  | 0.58  | 0.03  | 22 1    | JPS LEGACY         | TRM29659.00    | NONE | 0.0010 AD | ois          |        | 31502M001 | M     | 2       | 1490 |
| aira  | 1    | 24806  | 22489  | 608    | 90 | 0.35  | 0.48  | 0.03  | 30 1    | TRIMBLE 5700       | TRM29659.00    | DOME | 0.0000 AI | RA           |        | 21742S001 | G     | 2.11    | 11:  |
| ajac  | 8    | 23674  | 23644  | 0      | 99 | 0.19  | 0.16  | 0.04  | 2 1     | LEICA GRX1200GGPRO | LEIAT504GG     | NONE | 0.0000 AJ | TAC          |        | 10077M005 | M     | 2       | 51:  |
| albh  | 1    | 25563  | 25235  | 0      | 98 | 0.22  | 0.26  | 0.03  | 3 1     | AOA BENCHMARK ACT  | AOAD/M_T       | SCIS | 0.1000 al | .bh WCDA-ACP | 927    | 40129M003 | G     | 2.11    |      |
| algo  | 1    | 24839  | 24730  | 0      | 99 | 0.22  | 0.23  | 0.07  | 1 1     | AOA BENCHMARK ACT  | AOAD/M_T       | NONE | 0.1000 AL | GO CACS-ACP  | 8831   | 40104M002 | G     | 2.11    | 1    |
| alic  | 3    | 25127  | 25120  | 0      | 99 | 0.28  | 0.32  | 0.04  | 12 1    | LEICA GRX1200GGPRO | AOAD/M_T       | NONE | 0.0070 AI | ic           |        | 50137M001 | M     | 2.11    | 23   |
| alrt  | 1    | 29982  | 28999  | 12     | 96 | 0.11  | 0.13  | 0.06  | 8 1     | ASHTECH UZ-12      | ASH701945C M   | NONE | 0.1000 AI | RT           |        | 40162M001 | G     | 2.11    | 11   |
| amc2  | 1    | 24442  | 23963  | 0      | 98 | 0.33  | 0.34  | 0.06  | 7 1     | ASHTECH Z-XII3T    | AOAD/M T       | NONE | 0.0000 AM | IC2          |        | 40472S004 | G     | 2.11    | 1    |
| amu2  | 8    | 58175  | 58045  | 4      | 99 | 0.32  | 0.36  | 0.16  | 2 1     | TRIMBLE NETRS      | ASH700936D M   | SCIS | 0.0000 AM | IU2          |        | 66040M002 | G     | 2.11    | 49   |
| ankr  | 9    | 24955  | 24856  | 0      | 99 | 0.37  | 0.45  | 0.06  | 0 1     | TPS E GGD          | TPSCR3 GGD     | CONE | 0.0700 AN | IKR          |        | 20805M002 | М     | 2.11    | 57   |
| antc  |      |        |        |        |    |       |       |       |         | -                  | -              |      |           |              |        |           |       |         |      |
| areq  | 1    | 25340  | 25179  | 0      | 99 | 0.17  | 0.19  | 0.05  | 17 1    | ASHTECH UZ-12      | AOAD/M T       | JPLA | 0.0610 AR | EO           |        | 42202M005 | G     | 2.11    | 1    |
| arev  |      |        |        |        |    |       |       |       |         |                    | · <del>-</del> |      |           | -            |        |           |       |         |      |
| artu  | 1    | 25479  | 24966  | 0      | 97 | 0.40  | 0.41  | 0.03  | 3 1     | ASHTECH Z-XII3     | ASH700936D M   | DOME | 0.0796 AR | RTU          |        | 12362M001 | G     | 2.10    | 1    |
| aspa  |      | 25738  |        |        | 96 | 0.59  | 0.43  | 0.03  | 14 1    | TRIMBLE NETR5      | TRM55971.00    | NONE | 0.0000 AS | SPA          |        | 505038006 | М     | 2.11    | 8    |
| auck  |      | 24755  |        |        |    |       | 0.32  |       |         | TRIMBLE NETRS      | TRM41249.00    | NONE | 0.0550 AU | ICK          |        | 50209M001 |       | 2.11    | 37   |
| aukt  |      | 24748  |        |        |    |       | 0.41  |       |         | TRIMBLE NETRS      | TRM55971.00    |      | 0.0030 AU |              |        | 50216M001 |       | 2.11    | 37   |
|       |      |        |        |        |    |       |       |       |         |                    |                |      |           |              |        |           |       |         |      |
|       |      |        |        |        |    |       |       |       |         |                    |                |      |           |              |        |           |       |         |      |
|       |      |        |        |        |    |       |       |       |         |                    |                |      |           |              |        |           |       |         |      |
| •     |      |        |        |        |    |       |       |       |         |                    |                |      |           |              |        |           |       |         |      |



#### **Statistics on Data Latency**

- Monthly and yearly files summarize latency of hourly data at CDDIS
- Could be expanded to summarize daily and sub-hourly high-rate latency
- ftp://cddis.gsfc.nasa.gov/pub/gps/data/hourly/YYYY/
- Software available to other DCs

| Mon. | 00-04m   | 05-09m | 19-29m   | 30-59m  | 01-24h  | 01-3d | 3d-mis |
|------|----------|--------|----------|---------|---------|-------|--------|
| abmf |          |        | 89.31%   | 7.08%   | 3.61%   |       |        |
| abpo |          | 83.41% | 3.20%    | 0.76%   | 5.02%   | 7.61% | 7.61%  |
| adis |          |        | 83.63%   | 3.56%   | 12.81%  |       |        |
| aira | 20.72%   | 1.39%  |          | 76.77%  | 1.11%   |       |        |
| albh |          | 83.17% | 1.13%    | 0.28%   | 7.50%   | 6.51% | 6.51%  |
| algo | 86.46%   |        | 0.63%    | 0.63%   | 1.89%   |       |        |
| alic |          |        | 7.39%    | 6.14%   | 78.24%  | 7.53% | 7.53%  |
| amc2 |          | 98.06% | 0.83%    | 0.28%   | 0.83%   |       |        |
| ankr |          |        | 90.39%   | 5.15%   | 4.46%   |       |        |
| areq |          | 91.69% | 3.66%    | 1.13%   | 3.52%   |       |        |
| arev |          | 86.83% | 5.65%    | 2.96%   | 4.57%   |       |        |
| artu |          |        | 97.91%   | 0.14%   | 1.95%   |       |        |
| aspa | 67.23%   | 26.44% | 1.27%    | 3.38%   | 1.69%   |       |        |
| auck |          |        | 0.70%    | 97.91%  | 1.39%   |       |        |
| aukt |          |        | 9.17%    | 31.67%  | 59.17%  |       |        |
| zeck | 1        | !      | 89.93% I | 5.87% ∣ | 4.20%   |       |        |
| •    | 98.88% I | ;      |          | I       | 1.12%   | :     |        |
| •    | 0.85%    | 0.14%  | •        | 0.14% I | 0.42% I | 1     |        |
|      | 98.88%   |        |          |         | 1.12%   | !     |        |
| zwe2 |          | ;      | •        | 4.60%   | 8.77%   | 0.84% | 0.84%  |
| Avg. | 20.23%   | 23.55% | 39.57%   | 6.87%   | 9.00%   | 0.59% | 0.59%  |



# **Steps Ahead**

- Data flow
- Construction of RINEX files
- Compression
- Other?

#### Flow of Files within IGS

(Information, Data, Products)



- **Analysis Centers and Coordinators** 
  - Provide products to users (e.g., station coordinates, precise satellite orbits, Earth orientation parameters, atmospheric products, etc.)

- Global Data Centers
  - Global data / product distribution
  - Both within and beyond the IGS
  - Operational / Regional Data Centers
    - Interface to network stations
    - Perform QC and data conversion activities
    - Archive data for access to analysis centers and users
  - **Space Geodesy Network Stations** 
    - Continuously operational
    - Timely flow of data

- Management of service
- Facilitate communications
- Coordinate activities

#### **Data Flow - Current Status**

- Site guidelines: Data from IGS sites submitted to at a minimum of two DCs of which one is a GDC
  - DCs identified in site logs
- Current (actual) situation:
  - ODCs provide data to:
    - Either one or more RDC (usually one) and/or
    - One or more GDC
  - RDCs forward IGS sites to (one or more) GDC as required
  - RDCs/GDCs currently equalize selected data from selected sites
    - i.e., there is some equalization of data <u>but there is no rigorous mirroring of primary</u> <u>data submissions or subsequent re-submissions</u>
  - Result: inhomogeneous data set in DCs

#### Data Flow - Identified Problems & Goals

- Identified problems from GDC/AC perspective:
  - GDCs provide access to different sets of IGS sites
    - Users must "shop" multiple GDCs to retrieve required data
  - GDCs not synchronized and therefore not necessarily holding most current data
    - I.e., data holdings are not mirrored across GDCs
    - Inhomogeneous data set in GDCs and RDC's (especially wrt replacement data sets)
- Goal: ensuring robust (24/7) AC/User access to data:
  - Primary data submissions must reach intended GDCs (and RDC's)
  - Data resubmissions must reach intended GDCs (and RDC's)
  - Continued data flow when designated GDC is unavailable (and by extension RDCs as well)



#### **Data Flow - Recommendations**

#### GDC archive content

- All GDCs archive data from ALL IGS stations as identified on the IGS network website
- Advantages:
  - Ensures that data are consistent among GDCs and replacement data are distributed to all GDCs
  - Ensures users can easily get data from any GDC for any IGS site
  - Provides redundant data availability (also for resubmission)

#### Data flow:

- ODCs push primary data submission from their stations to ALL GDCs
- ODCs push any/all subsequent resubmissions to ALL GDCs
- ODCs issues advisory for ALL resubmissions
- Advantages:
  - Implies simplified data flow
  - Ensures responsibility for data remains with ODC
  - Allows for publishing information about replacement data



# Data Flow - Implementation

- How do we get there:
  - Prepare GDCs for new data flow paths (and additional storage required)
  - Prepare ODCs for data push to:
    - All GDCs
    - Appropriate RDCs
    - Others (as required on individual basis)
  - Implement ODC to GDC (and RDC) direct push



# RINEX Construction Issues (1/2)

- Several methods are used to form daily RINEX file of 30-second sampled observations
  - Generated at station (receiver)
  - Created from concatenated hourly files
  - Created from accumulated either binary or RTCM high-rate RT data streams and filtered/decimated to 30-second sampling rate
- Different methods cause different results
  - Concatenated files are not necessarily equivalent to "true" 24 hr data files
  - RINEX files from RT data stream:
    - Number of epochs reduced due to loss of data in data stream
    - Increase in data gaps and/or cycle slips
  - RINEX files from RT RTCM:
    - Observation types in RINEX file: at most 4 observables transferred through RTCM, analysis-specific s/w formatting
    - Data field resolution: code observable from RTCM 3.0 less accurate than RINEX V2;
      HP-RTCM should address this
    - New RTCM format (HP-RTCM) should address accuracy concerns
  - Receiver features yield different # obs in epoch or different cycle slips



# RINEX Construction Issues (2/2)

- Currently the IGS site guidelines state that daily/hourly files should NOT be created from streams
- However, for future consideration, creating daily/hourly RINEX files from streams:
  - Advantages:
    - Stream established directly from receiver to DC
    - Files available immediately following end of epoch (hour or day)
  - Disadvantages
    - Stream interruptions mean incomplete files
    - Inconsistent files at DCs if multiple DCs receive streams and generate RINEX
- Further research needed to address differences (see RINEX Construction Recommendations)



#### File Generation Differences

- At this time files created from streams are not equivalent to files created at stations and transferred by ftp
  - Adequate for real-time and near real-time applications?
  - Not adequate for long term archive and future analysis
- Different numbers of epochs (loss of data in data stream)
- Different RINEX observation types
  - Currently, 4 observables at most transferred through RTCM (HP-RTCM will resolve this)
  - Analysis software-specific formatted files (e.g., Bernese software 5.0 ignores
    C2 observable)
- Features of receivers may cause different numbers of observations within an epoch and different cycle slips
- Data field resolution (code observable from RTCM 3.0 less accurate than RINEX 2)

#### RINEX Construction - Recommendations

- Develop tool for comparison of RINEX files from various construction approaches, e.g., zero-baseline processing
  - Run the tool at the site and at the data center to recover receiver-specific and transport-specific issues
- Define minimum requirements for acceptance of an accumulated data stream of observations as a RINEX file in IGS data archives (work with IC)
  - Minimum number of epochs
  - Maximum tolerated epoch differences per satellite
  - Maximum tolerated numerical difference for each individual observation (after appropriate harmonization of compared RINEX files)
  - Data field resolution for each observation type
- Specification of observation types that are mandatory and others that are optional
- Agree on procedures to fill the gaps in the case data streams have been interrupted



# Compression

- Currently used data compression (Unix compress) is inefficient and out of date
- Recommendation:
  - Change compression used in IGS infrastructure from UNIX compress (Z) to:
    - bzip2 or
    - gzip
- Discussion:
  - Both are widely distributed across multiple O/S
  - Better compression factor
  - Speed:
    - gzip faster than 'Z'
    - Bzip2 slower than 'Z'
  - Current leaning is toward bzip2 but need to complete testing/consultation
- Implementation scenarios:
  - Change compression throughout IGS infrastructure
  - Allow DCs to utilize more efficient compression on historic archives
- Any changes must be coordinated with DCs, ACs, manufacturers, users, ...



## Remaining Issues

- Long-term access to high-rate data
  - Can hourly files be created and archived from sub-hourly files?
  - Can files be "packaged" on a site/day basis
  - How long retained online?
- Data usage statistics
  - GDCs provide information (who, how much) on data downloads by ODC/station
- Continue to work with the IC and ACs to resolve these and other issues!



## **Data Center WG Meeting**

- Tuesday, June 29, 16:30-17:30
- Topics:
  - Viability/Requirement for WG
  - Membership
  - Top Issues
    - Compression
    - High-rate data archive
    - RINEX formulation



# **Backup Slides**



#### **Data Center Updates**

#### CDDIS

- Operational on new server system, same access for users, new access procedure for data and product upload
- Working on revision to metadata and new data discovery capability
- Archiving test data sets (software receiver, RINEX V3, L5)

#### IGN

Developing new websites for the GDC and RF coordination

#### KASI

- GDC system upgraded for better reliability and backup capabilities
- Three cluster servers for high availability of GDC system
- Mirroring to backup server

#### BKG

- Archiving RINEX V3 data
- Preparing to archive Galileo data



## File Generation Differences (1/2)

 Single epochs are missing in from files created in data streams (statistics available at EUREF)

|      |      |      | 174/2010 (23-06-2010) |      |      |       |      |      |      |      |       |       |       |      |      |      |       |      |      |      |      |      |      |       |
|------|------|------|-----------------------|------|------|-------|------|------|------|------|-------|-------|-------|------|------|------|-------|------|------|------|------|------|------|-------|
|      | 0Ъ   | 1h   | 2h                    | 3ћ   | 4h   | 5Ъ    | 6h   | 7h   | 8ћ   | 9h   | 10h   | 11h   | 12h   | 13h  | 14h  | 15h  | 16h   | 17h  | 18h  | 19h  | 20h  | 21h  | 22h  | 23h   |
| ACOR | 100% | 100% | 100%                  | 100% | 100% | 100%  | 100% | 100% | 100% | 100% | 96%   | 88.5% | 88.6% | 100% | 100% | 100% | 100%  | 100% | 100% | 100% | 100% | 100% | 100% | 100%  |
| ALAC | 100% | 100% | 100%                  | 100% | 100% | 100%  | 100% | 100% | 100% | 100% | 96.1% | 88.6% | 88.7% | 100% | 100% | 100% | 100%  | 100% | 100% | 100% | 100% | 100% | 100% | 100%  |
| ALBA | 100% | 100% | 100%                  | 100% | 100% | 100%  | 100% | 100% | 100% | 100% | 96.1% | 84.9% | 88.6% | 100% | 100% | 100% | 100%  | 100% | 100% | 100% | 100% | 100% | 100% | 100%  |
| ALME | 100% | 100% | 100%                  | 100% | 100% | 100%  | 100% | 100% | 100% | 100% | 96.1% | 88.5% | 88.7% | 100% | 100% | 100% | 100%  | 100% | 100% | 100% | 100% | 100% | 100% | 100%  |
| AUT1 | 100% | 100% | 100%                  | 100% | 100% | 95.5% | 100% | 100% | 100% | 100% | 100%  | 100%  | 100%  | 100% | 100% | 100% | 100%  | 100% | 100% | 100% | 100% | 100% | 100% | 95.6% |
| BELF | 100% | 100% | 100%                  | 100% | 100% | 100%  | 100% | 100% | 100% | 100% | 100%  | 100%  | 100%  | 100% | 100% | 100% | 100%  | 100% | 100% | 100% | 100% | 100% | 100% | 100%  |
| BELL | 100% | 100% | 100%                  | 100% | 100% | 100%  | 100% | 100% | 100% | 100% | 100%  | 100%  | 100%  | 100% | 100% | 100% | 99.98 | 100% | 100% | 100% | 100% | 100% | 100% | 100%  |

 Tests show that there are different numbers of observations/epoch in stream files than station files for some satellites





# Compression (2/2)

- Implementation (proposed):
  - Sept 30, 2010: last date for post workshop comments to be received by IGS DCWG
  - Oct 30, 2010: complete synthesis of input and final recommendation by DCWG
    - Circulate to IC, DC's, AC, manufacturer's for last comment
  - Nov 30, 2010: complete feedback for final discussion and report completion at DCWG meeting at Fall AGU
  - Distribute recommendation (IGS, Manufacturers, etc.)
  - January 2011: commence implementation
  - NOTE: period of overlap (6mths 1 yr) required to accommodate the necessary changes to multiple post processing software which retrieve data from IGS-DC's